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The behavior of plates under the influence of strong shock waves is important in rela- 
tion to the study of large plastic deformations and fracture. As a rule, large plastic 
deformations and fracture of plates are treated separately in the majority of existing 
papers, which are surveyed in [1-4]. In the present article we report an experimental study 
of the dependence of the buckling deflection of aluminum plates of various diameters and 
thicknesses on the impulsive load created by the detonation of a flat high-explosive charge 
in a shock tube. We establish the critical buckling deflections responsible for fracture 
of the plates. The results are presented in generalized form. 

Plates used as diaphragms for shock tubes are assumed to be edge-supported by clamping 
between two tightly bolted flanges. When the high-pressure and low-pressure chambers have 
different diameters, the plate is clamped around the larger diameter, i.e., the plate is 
impulsively loaded over part of its surface. The plate is assumed to be loaded axisym- 
metrically and uniformly in either case. 

Our experiments were carried out on shock tubes with a plane shock wave generated by 
the detonation of a flat laminated high-explosive charge under standard atmospheric condi- 
tions [5]. The shock tubes were steel cylinders with inside diameters d = 0.09 m, 0.19 m, 
and 0.40 m and with lengths L = 0.5 m and 2 m. The explosive charge was placed in the cross 
section located at equal distances from the ends of the tube. The impulsive load on the 
plate was varied by changing the thickness of the charge. The impulsive load was determined 
ballistically from the launching of a heavy, nondeformable target placed at the site of the 
investigated plate, and the waveform of the shock wave reflected from the nondeformable 
rigid wall was determined by a piezoelectric transducer [5]. The duration of the pulse de- 
pended on the distance x from the charge to the loaded object and was equal to i0 -# sec and 
5"10 -4 sec at the 0.l-peak pressure level for the selected distances of 0.25 m and 1 m, re- 
spectively. 

The buckling deflection ~ at the center of the plate was determined experimentally as a 
function of the specific impulse i for D-16T aluminum alloy plates. The plates had thick- 
nesses h = (1-4)'10 -3 m, and the diameter of the clamping flanges was varied from 0.09 m to 
0.63 m. Figure 1 shows photographs of the deformation process of a plate with a diameter of 
0.19 m, which were taken with a fast-framing camera and which exhibit the motion of the 
plastic link from the clamped edge toward the center of the plate. The time between con- 
secutive frames is 66"10 -6 sec, and the velocity of the plastic link is ~400 m/sec. A dia- 
gram of the motion of the polar point for a plate with d = D = 0.4 m and h = 4"10 -3 m with 
loading by an explosive charge of thickness A = 5"10 -3 m at a distance x = 0.25 m is shown 
in Fig. 2. The dome corresponding to permanent set of the plate is formed immediately 
prior to stopping of the polar point, where the maximum deflection at the center is slightly 
greater than the buckling deflection. The maximum velocity of the polar point for the ex- 
periment represented in Fig. 2 is 260 m/sec, and the dashed curve gives an estimate of the 
motion of the free plate without the influence of clamping under the influence of a pres- 
sure pulse corresponding to the reflected shock wave. 

The buckling deflection as a function of the impulsive load for some of the investi- 
gated plates is plotted in Fig. 3, in which the curves are enumerated according to the fol- 
lowing conditions: i) d = D = 0.40 m, h = 1.5"10 -3 m; 2) d = D = 0.40 m, h = 4-10 -3 m; 3) 
d = 0.0g m, D = 0.30 m, h = 4-10 -3 m; 4) d = D = 0.09 m, h = 4"10 -3 m. All the ~(i) curves 
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in the figure are linear up to fracture of the plate, which is indicated by the plus symbol~ 
The initial specific impulses i 0 leading to buckling are determined by extrapolation of 
the linear dependence 6(i); they fall in the interval from i 0 = 0 to 0.002 MPa'sec and cor- 
respond to the empirical function i 0 = K0(h/d2)T~dTD (K0 = 40 MPa.m; h, and d are in units 
of 10 -2 m, m in sec). For plates loaded over the entire surface (d = D) the total impulse 
leading to plastic deformation of the plate depends only on its thickness and the duration 
of the load. 

The majority of the data on the deformation and fracture of plates have been obtained 
for impulsive loads with a duration of i0 -~ sec. A comparison of the experimental results 
confirms the fact that the buckling deflections of the plates not only depend linearly on 
the impulse, but are also proportional to the parameters D and i/h. The results can there- 
fore be represented by the empirical function ~h/D(i - i 0) = f(d/D) plotted in Fig. 4, 
where the pulses represent previous data [6] corresponding to the impulsive loading of 
aluminum alloy plates by the detonation of a laminated charge through a polyethylene buffer 
layer. 

We now compare the reported data with the calculated values of the buckling deflection. 
The dissipation of energy in the plate material is entirely attributable to effects of mem- 
brane forces in the range 6 >> h [4]. We assume that the material is inelastoplastic, and 
we investigate the loading of a freely supported plate by a rectangular pressure pulse i = 
p0m (P0 is the pressure, and m is the duration). In this case the work done by the pres- 
sure forces is spent in kinetic energy and in irreversible elongation of the centroidal sur- 
face of the plate: 
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Here r is the radial distance, t is the time, w(r, t) is the bending deflection of the cen- 
troidal surface, and p and o0 are the density and yield point of the material. The kinetic 
energy of transverse motion can be disregarded under these conditions [11. We seek w in 

the form [4] w (r, t) ~ 5n (t) 0 ~ (~ is the bending deflection at the center of the 
i 

plate, J0(~n-fr/D) is the zeroth-order Bessel function of the first kind, and a n are the 
roots of the equation J0(~n) = 0, which is obtained from the boundary condition for the 
freely supported plate w(D/2, t) = 0). Taking these conditions into account, we have the 
equation of motion 

peD % , {  (%) 

from which it follows that 

where 

4a~ 5 ~ O ~ - ~ t ~ ,  5 ~ ( t = O ) ~  O, 
9D ~ n, 

w 0 , t ) = 2  B~ (1 )  

B . =  per % j ~ ( % ) '  ~ " =  D ; 

and  a z (  ) d e n o t e s  t h e  f i r s t - o r d e r  B e s s e l  f u n c t i o n  o f  t h e  f i r s t  k i n d .  

At  t > ~, i . e . ,  when e x t e r n a l  f o r c e s  a r e  a b s e n t ,  t h e  t o t a l  e n e r g y  o f  t h e  p l a t e  i s  an  
i n t e g r a l  o f  m o t i o n .  T h i s  g i v e s  u s  t h e  e q u a t i o n  f o r  f r e e  v i b r a t i o n s  i n  t h e  p l a s t i c  domain  

2 6 n + mn8 n = 0 ;  s o l v i n g  t h i s  e q u a t i o n  s u b j e c t  t o  i n i t i a l  c o n d i t i o n s  d e t e r m i n e d  f r o m  g q .  ( 1 ) ,  
for t = T, we obtain 

= ~- .-g [(1 - -  cos ~n~) cos mn (t - -  T) + sin mn~.sin ~ (t - -  T)] J0 an-ff  �9 
n = l  ~n 

The p l a t e  s t o p p i n g  t i m e  i s  d e t e r m i n e d  f r o m  t h e  c o n d i t i o n  8 w / a t  = 0 and  i s  e q u a l  t o  t h e  max- 
imum o f  t h e  t i m e s  t n r e p r e s e n t i n g  t h e  r o o t s  o f  t h e  e q u a t i o n  t a n  m n ( t n  - ~) = s i n  m n 7 / ( 1  - 
cos %n~). When the pulse duration is much shorter than the natural period of the plate in 
the plastic domain, �9 << 2~/w i = TI, the stopping time is t i = TI/4, and the buckling de- 
flection at the center is 

~d ~ q (%d/D) 
5 -- h V ~  ~a  ~J~ (%) " (2)  

As the pulse duration is increased from T = 0 to z = Tn/2 , the deflection of the corre- 
sponding harmonic decreases by approximately 40%, and the stopping time increases linearly 
from TI/4 to TI/2. The most efficient loading occurs when the duration x < Ti/4. The be- 
havior of the parameter 6h/iD, calculated according to Eq. (2) for a 0 = 3.7.102 MPa [3] and 
represented by the dashed curve in Fig. 4, is observed to be somewhat higher than the experi- 
mental data, but by no more than 20%. Despite a certain indeterminacy in the experimental 
boundary conditions, this agreement can be deemed satisfactory. It is particularly accurate 
for plates of large diameter (D = 0.4 m). This is probahly attributable to the fact that, 
according to [3], the clamping conditions do not play a significant role for thin plates of 
large diameter. 

An increase in the pulse duration from 1O -4 sec to 5-10 -4 sec is accompanied by a cer- 
tain decrease in the buckling deflections in the reported experiments, at least for large- 
diameter plates. According to the experimental data, the parameter dh/(i - i 0) decreases 
by 18% for plates of diameter 0.4 m. This result is attributable to the fact that the period 
of the first plastic harmonic of the plate, T i ~ i0 -~ sec, exceeds the indicated range of 
durations. 

It is interesting to note that the quantity ~o0/p with the units of velocity in the 
expression for the plastic harmonic frequencies w n is approximately equal to 370 m/sec for 
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the above-stated value of o0, in good agreement with the measured velocity of the ]plastic 

link v ~ 400 m/sec. 

Two types of shock-induced fracture of the plates were observed in the experiments de- 
scribed here: The material fractured along the clamped edge of the plate when subjected to 
loading of the entire surface (d/D = i), whereas radial cracks appeared at the center in 

the case d/D < i. 

An analysis of the data shows that the critical buckling deflections 8, corresponding 
to fracture of the plates can be represented by the generalized functional relation 6,/D = 
r (Fig. 5), which is valid for all values of d/D, i.e., for any type of fracture. The 
quantity 6, was considered to be the average of the maximum buckling deflection at which 
fracture did not set in and the minimum value at which the plate fractured. The pluses in 
Fig. 5 represent the experimental results of [i] for the loading of aluminum plates by an 
underwater explosion. The graph indicates that 6, is practically independent of h for thick 
plates (h/D > 0.02). We note that the observed character of the fracture is qualitatively 
consistent with earlier predictions [3]. 

We estimate the average strains e, assuming that they are associated entirely with ten- 
sion of the plate [7]: 

~2 
~ [ l aw  'i ~ _ 2 

0 

(So and S are the initial and instantaneous areas of the centroidal surface of the plate). 
Using Eq. (2), we obtain 

, ,  
8=\D] ~-a ~2f21~ ~ 1 1  i - - ~ , ~ ,  " (3 )  

An estimation according to this equation shows that, for example, that the average,strain 
for plates of diameter d = D = 0.19 m and thickness h = 2"10 -3 m at 6 = 0.03 m is ~: = 0.085. 
Etch-line measurements in one of the tests showed that the maximum radial strain is attained 
at the center and has a value -0.i, and the average strain can be assumed equal to 0.06. 
Equation (3) thus gives satisfactory estimates and can be used to find the average fracture 
strain g, when the experimental values of d, are used. This type of function g, = F(hd/D 2) 
is plotted in Fig. 6 (the pluses represent the experimental values of the radial fracture 
strains at the center of aluminum plates exposed to an underwater explosion [i]). The small- 
est average critical tensile strain leading to fracture of the plate occurred for d = 0.09 
m, D = 0.63 m, h = i'I0 -s m and had a value ~, = 0.01. The maximum value $, = 0.361 corre- 
sponded to loading of a plate with d = D = 0.09 m and h = 4"i0 -s m. 

The results of the present study can be used in the selection of diaphragms for shock 
tubes. 

i ~  

2. 

LITERATURE CITED 

F. A. Baum, L. P. Orlenko, et al., Physics of Explosions [in Russian], Nauka, Moscow 
(1975 ) .  
A. S. Vol'mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow 
( 1972 ) .  

909 



3. V.G. Bazhenov and M. A. Batanin, "Elastoplastic deformation processes of circular 
plates in impulsive loading with allowance for large bending deflections," Prikl. Mekh., 
i__44, No. 3 (1978).  

4. Jones, Trans. ASME Ser. E: J. Appl. Mech., 35, No. i (1968). 
5. E.E. Lin, A. V. Sirenko, and A. I. Funtikov, "Time variation of the pressure in the 

reflected shock wave associated with the detonation of a laminated explosive charge," 
Fiz. Goreniya Vzryva, 15, No. 2 (1979). 

6. T.A. Diffey and S. W. Key, "Experimental-theoretical correlations of impulsively 
loaded clamped circular plates," Exp. Mech., 9, No. 6 (1969). 

7. A. Nadai, Theory of Flow and Fracture of Solids, McGraw-Hill, New York (1963). 

GROWTH OF DISTURBANCES IN A SUPERSONIC 

BOUNDARY LAYER 

S. A. Gaponov UDC 532.526 

The onset of turbulence in supersonic flows has stimulated investigations of the sta- 
bility of compressible boundary layers. The first theoretical studies of this problem were 
reported by Lees, Lin, and Dunn (see Lin [i]). Attempts to verify the theory experimentally 
have been undertaken [2, 3], but the experiments were performed with natural disturbances, 
whose wave spectra were not controllable. Consequently, although spatially growing dis- 
turbances were successfully observed in [3], the comparison with the theoretical results was 
of a qualitative nature. The outcome in [2], on the other hand, proved essentially unsuc- 
cessful. More reliable experiments are reported by Kendall [4], who succeeded in confirming 
the theory in application to two-dimensional second-mode disturbances and three-dimensional 
(oblique) waves at a Mach number M = 4.5 and a Reynolds number Re = / ~ =  1550. The 
causes of the failures in studies of two-dimensional first-mode disturbances have yet to be 
explained. 

Experimental studies of the stability of a supersonic boundary layer have been carried 
out at the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the 
Academy of Sciences of the USSR [5]. Reliable data were obtained with the use of controlla- 
ble artificial disturbances. They fully corroborate the basic principles of the theory of 
the stability of both plane-parallel [i] and slightly nonparallel [6] compressible flows. It 
has been established [7] that the wave number spectrum contains several maxima at a given fre- 
quency. The principal maximum corresponds to the results of the linear theory. The others 
could not be explained within the scope of the existing theory. The upstream incursion of 
disturbances has been observed in later experiments [8], but has not been investigated theo- 
retically. Moreover, the spatial growth rates of waves whose fronts propagate at an angle 
X < 45~ relative to the main flow differ from those predicted by the theory of plane-paral- 
lel flows. In the present study, therefore, we continue the theoretical investigation of 
the growth of disturbances in a supersonic boundary layer, taking the new experimental data 
into account. 

i. The stability of a supersonic boundary layer on a flat plate is analyzed both in the 
parallel-flow approximation and with allowance for departures from parallelism. The trun- 
cated Dunn-Lin equations (see [9]) are used in the first case, and the theory of [i0] is 
used in the second case. In the calculations it is assumed that M = 4.0, Re = ~ = 600, 

the Prandtl number Pr = 0.72, and the adiabatic exponent 7 = 1.4. The viscosity--temperature 
relation is described by Sutherland's formula. Here U~ and v~ are the velocity and viscos- 
ity at the outer edge of the boundary layer. 

The disturbance is assumed to be a function of the dimensionless coordinates and time 
in the form 
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